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Abstract . Practical modeling of spatial surfaces is more convenient by 
means of transformation of their flat developments made as topologically 
connected kinetic structures. Any surface in 3D space topologically consists 
of three types of elements: planar facets (F), linear edges (E) and point ver-
texes (V). It is possible to identify the first two types of these elements with 
structural units of two common types of transformable systems: folding 
structures and kinematic nets respectively. 

In the paper a third possible type of flat transformable structures with ver-
texes as form-generative units is considered. In this case flat developments 
of surfaces are formed by arranged point sets given by contacting crossing 
points of some classes of periodic knots and links made of elastic-flexible 
material, so that their crossing points have real physical contacts. A frag-
ment of plane point surface can be reversibly converted into a fragment of a 
spatial surface with positive, negative or combined Gaussian curvature by 
means of transformation which saves connectivity between the points, but 
not the distances and angles between them. It was proved experimentally 
that this new form-generative method can be applied to modeling of both 
oriented and non-oriented differentiable topological 2D manifolds. The 
method of form-generation based upon the developing properties of peri-
odic structures of knots and links may be applied to many practical fields 
including art, design and architecture. 
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1. Euler’s Formula and Two Common Types of Kinetic Surface 
Models 

 
The most general variety of geometry – topology, treats surfaces in 
3D space as 2D manifolds: oriented or non-oriented. It was proved 
that any oriented manifold is equal to a surface of a pretzel with a 
some number of holes in it. The number of holes is a topological in-
variant called “surface genus”, which is equal to zero for a sphere, 
one for a torus, two for a pretzel with two holes and so on. Any 2D 
surface can be divided into a number of polygonal meshes or facets 
(F) with borders or edges (E) between them, which intersect in 
points or vertexes (V). These three elements of an any surface are in-
terrelated by a simple equation known as “Euler’s formula”: a num-
ber of vertexes minus a number of edges plus a number of facets is 
equal to two minus two multiplied by n (V − E + F = 2 − 2n), there n 
is the surface genus. 
 
Practical modeling of 2D surfaces in 3D space is more convenient 
by means of transformation of their flat developments made as con-
nected kinetic structures. There are two well-known types of such 
structures, which are based upon using planar (F) and linear (E) 
elements of surface division as their structural invariants. In the first 
case the result is a folding structure – a flat solid sheet divided into a 
number of planar facets (F) with turning linear (E) hinges between 
them (Figure 1). Flat kinetic folding structures are the basic form-
generative principle for different types of transformable paper mod-
els, including the art of origami. 
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Fig. 1. Flat folding structure as a method of form-generation of surfaces. 
 

In the second case the structure is a kinematic net – a flat net with 
non-triangle meshes assembled of linear (E) elements with turning 
point hinges (V) between them. The net can completely lie on a 
plane or be transformed fully or partly into spatial position (Fig-
ure 2). The principle of kinematic net structure has found its wide 
application in practical modeling of complex curved surfaces. In 
1878 Russian mathematician P. L. Chebyshev stated equations for 
flat developments of spherical surfaces made of fabric with square 
meshes [1]. In the end of 19th century A. Gaudi used the method of 
inversion of suspended net models with the aim of form-finding in 
architecture. In the middle of 20th century F. Otto started his own 
experiments with suspended net models that lead him and his col-
leagues to a new approach to grid shells building theory and a whole 
number of architectural masterpieces [2]. 
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Fig. 2. Kinematic net with square meshes as a method of form-generation of sur-
faces. 

 
 

2. Vertex Structures As a New Third Type of Kinetic Surface 
Models 

 
In addition to the planar and linear types of flat developments of sur-
faces it may be proposed a third possible type of flat transformable 
structures with vertexes (V) as form-generative units. Approxima-
tions of a surface by number of points is a common method in 
mathematics and computer graphics. A separate point in this case is 
just a dot in virtual space determined by its numerical value in rela-
tion to three Cartesian coordinates. 
 
A physical model of a point can be done as a contact of two physical 
bodies such as tangent solid spheres or tangent cylinders with 
non-parallel axis. A number of contact points on a plane or in space 
may be represented as a vertex or point surface (Figure 3), but to 
function as a transformable model of continual surface the contact-
ing bodies must be connected between them and organized into a ki-
nematic structure. The structure is the most important part of point 
models of surfaces because it coordinates behavior of great number 
of contact points to provide them with the possibility of synchro-
nized sliding movement. 
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Fig.3.  A fragment of point surface made of woven resilient rods. 
 

This structure is not just a simple sum of neighboring kinematic 
units like the structures of planar (F) and linear (E) models of sur-
faces – it is synergetic in the R. B. Fuller’s meaning of the word: a 
“behavior of integral, aggregate, whole systems unpredicted by be-
haviors of any of their components or subassemblies of their com-
ponents taken separately from the whole” [3, p. 3]. 
 
 
3. Resilient Knots and Links as a Structural Principle of Vertex 
Surface Models 

 
My own experimental research into different plain vertex models 
confirmed that the most natural forms of organizing independent 
point contacts into topologically connected structures are knots and 
links [4]. A resilient rod forms an elementary structure then its ends 
are joined together. As a result the rod becomes a ring – a trivial 
knot (Figure 4, a), and its structural stability depends on the ratio be-
tween the diameter of the ring and diameter of cross-section of the 
rod. Then the diameter of the ring is too large to resist the inner tor-
sion forces in the bent rod, the ring turns into double nested loops 
(Figure 4, b). If the process of loops emerging is combined with 
joining together of the free ends of the rod, the connected rod may 
be knotted and take form of the simplest knot “trefoil” (Figure 4, c). 
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Fig. 4. a. Resilient ring (trivial knot). b. Double loop (trivial knot). c. Simplest 
knot – trefoil. 

 
The process of “self-knotting” is very typical for long flexible-
resilient strings, such as steel wire or fishing-line. Natural string-like 
flexible long objects, such as polymeric molecules including DNA, 
often take circular closed forms of rings and knots either single or 
linked [5]. Knots and links are widespread and natural way of struc-
tural organization for string-like flexible-resilient long objects. 
 
 
4. Knots on Different 2D Surfaces 
 
The trefoil is a “torus knot”, because it can be placed without any 
self-crossings on the surface of a torus (Figure 5, b). Like a trefoil, 
there are knots that can be placed on the surfaces of other 2D mani-
folds: a ring or trivial knot on a sphere (Figure 5, a), “figure eight” 
knot – on the surfaces of pretzels with two holes (Figure 5, c) and so 
on. 
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Fig. 5. Knots on 2D manifolds. 
 

The trefoil knot may have two mirror types – a “left” one and a 
“right” one. Each of them can be tied on the torus surface without 
self-crossings (Figure 6, a, b), but been tied together on the same to-
rus, they inevitably have contact points between them and form a 
knotted fabric on torus surface (Figure 6, c). If both knots made of 
resilient material and their crossings are really contacting, the struc-
ture will represent a model of torus point surface. 

 

 
 

Fig. 6. Two mirror trefoils tied together on the same torus form a torus point sur-
face. 

 
The contacting points define the model of the surface – namely the 
exterior shape, and two mirror knots form its interior structure. In 
the same way it is possible to receive a point surface of an arbitrary 
pretzel with two mirror pretzel knots of appropriate type. 
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5. Energy of Resilience as Forming Principle of Cyclic Knots 
 

Quantity of elastic energy or energy of resilience in a knotted rod 
depends of topological complexity of a knot and is known among 
other topological invariants of knots [6]. Thanks to this energy the 
central lines of knotted rods tend to coincide with a plain, so all their 
crossings tend to be really contacted, that let them form a model of 
flat point surface. The two mirror trefoils on the torus surface also 
tend to collapse, and if the torus itself disappeared, the contacting 
points of the two knots would place themselves in a flat ring-shaped 
area. And vice versa: a flat model of point surface, given by a torus 
knot or a link, may be transformed into a spatial state and fixed in it 
in order to keep the received shape. 
 
The energy of resilience in knots also defines geometry of their 
structures. It force a closed resilient rod to take a shape of a ring and 
a rod of the same material knotted into a trefoil – a shape of a double 
turn coil. A coil is a natural shape for any knotted and closed resil-
ient rod defined by its minimal internal energy of resilience. At the 
same time for some periodic knots [7] like trefoil, their coils may be 
divided into a number of equal loops or “petals”: in the case of tre-
foil the number of loops is three. Knots of this type with natural 
numbers of coil turns and petal loops have a general name of 
“Turk’s Heads”. Simple Turk’s Heads with small numbers of coil 
turns and petal loops made of soft non-resilient material such as 
rope, have a wide spread in seamen’s practice as well as in the field 
of decoration and art [8]. It is possible to give the name of “cyclic 
knots” to the Turk’s Head knots made of resilient material because 
of geometrical structure of their shape. From the topological point of 
view they are periodic closed braids [9]. 
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Fig.7. Cyclic knots classified according to numbers of their turns of coils (p) and 
petal loops (q). 

 
All cyclic knots and links can be classified according to the numbers 
of their turns of coils (p) and petal loops (q) in the system of or-
thogonal coordinates. The numbers p and q may be equal to any 
natural number: if they are coprime – the structure is a knot (Fig-
ure 7). Here is exactly the same law as for epicycloids: diameters of 
their generating circles must be coprime natural numbers. If p and q 
are not coprime numbers the structure is a link of equivalent knots, 
and number of linked knots is equal to the greatest common divisor 
of p and q. 
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6. Form Generative Properties of Cyclic Knots and Links 
 

The possibility to transform a cyclic knot from flat position to a spa-
tial one depends of a sufficient number of its contacting crossings. 
This number is determined by numbers of turns of coils and petal 
loops, and consequently of total resilient energy of knotted rods. In-
creasing of the energy proportionally to the quantity of contacting 
crossings leads knots to a new property: from simplest knots like a 
trefoil they grow into complicated structures that can serve as mod-
els of point surfaces. I gave the name “NODUS” structures to these 
cyclic knots designed specially for modeling of planar and spatial 
point surfaces (the word “nodus” means “a knot” in Latin) [10]. 
 
A NODUS structure during its transformation changes the lengths of 
the edges of all its facets and angles between them. Thanks to that 
ability, the structure changes its geometry as a whole and creates 
vertex or point models of the surfaces with an arbitrary Gaussian 
curvature: parabolic, elliptic or hyperbolic. These three types of sur-
faces completely exhaust all possible internal geometries of 
two-dimensional manifolds [11]. As contrasted to solid models of 
surfaces, that can not change their Gaussian curvatures without 
breaks and folds, point surfaces of NODUS structures permit transi-
tion from positive Gaussian curvature (elliptic) to negative one (hy-
perbolic) through mediation of neutral (parabolic) curvature. The 
same NODUS structure can take forms of elliptic and hyperbolic 
curvature. A surface of torus is a combination of these two types of 
curvatures together with two intermediate areas of parabolic curva-
ture (Figure 8, a-c). 
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Fig. 8. NODUS structures with elliptic, hyperbolic and combined surface curva-
tures. 

 
A surface of pretzel may be received as a combination of several to-
rus structures (Figure 9, a). It is possible to create many other forms, 
for example surfaces with self crossings (Figure 9, b, c). 
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Fig. 9. Different forms of surfaces received by means of NODUS structures. 
 

Also NODUS structures let make fragments of non-oriented 2D 
manifolds such as Möebius band with self crossing (Figure 10) or 
cross-cap – part of projective plane [12]. 

 

 
 

Fig. 10. An example of one-side surface – a Möebius band with self crossing. 
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Apart from the transformation of NODUS structures that changes 
the sign of its curvature and which can be named “qualitative trans-
formation”, there is another kind of transformation – the “quantita-
tive” one. This transformation happens as a gradual changing of nu-
merical value of Gaussian curvature of point surface from its 
minimum to a maximum value without an alteration of the curvature 
sign. The minimum value of Gaussian curvature may be equal to 
zero, and in this case the point surface of a NODUS structure ap-
proximates a piece of plane. In this case the process of transforma-
tion represents a continual sequence of changing forms, for example 
from spherical segment through hemisphere to sphere (Fig-
ure 11, a-d). The transformation of NODUS structure is a reversible 
process. Thanks to its form changing, NODUS structure accumu-
lates elastic energy and becomes stronger. Every spatial form of 
NODUS structure may be strictly fixed by limitation of its mobility 
and as a result the transformable structure will become a stable one. 
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Fig. 11. Transformation of NODUS structure as continual sequence of changing 
shapes. 

 
 

Polymorphous properties of NODUS structures give to an artist or a 
designer a suitable tool not only for finding the demanded form in 
space, but also for “tuning” it in environment. It is possible to envi-
sion in advance a script of development of a planar point structure 
into a surface in three-dimensional space by means of different dis-
positions of modular form-generating structures on a plane, by 
choice of their connections and by spatial stratifications of their con-
tact points. 
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Fig. 12. A large-sized NODUS structure in natural environment. 
 

According to my experiments, NODUS structures allows to extrapo-
late their structural properties from models to large-sized structures 
(Figure 12), that gives a reason to consider them also as form-
generative principle for real-size kinetic architectural structures [13]. 
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