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Abstract Computer tools (ray-tracing software, 3D modeler), new technologies
(laser cutting, 3D printing), new communities (fablabs), increasing computing power
and improved graphic screens: all together make it possible for the mathematicians
to give life to their ideas. Moreover, having described basic mathematical objects,
one can play with their parameters and just see what arises. This paper illustrates this
fact through several examples: anamorphoses, cardioid based structures and circle
packings.

1 Introduction

We can assume, with strong confidence, that Gaston Julia (1893-1978) never saw
the image of a Julia set. Felix Klein (1849-1925) and Robert Fricke (1861-1930)
drew only one representation of a limit set[8]. Some thirty years ago, on the 1st of
March 1980, Benoı̂t Mandelbrot first saw a blury image of the fractal set christened
after him appearing on his printer. He then spent several weeks making new im-
ages, to understand the shape he just discovered[14]. Nowadays, anyone can write
or download a program or a smartphone application, running orders of magnitude
faster, zooming to scales out of reach at Mandelbrot’s time. Playing with mathemat-
ical objects is easier today, scientists can experiment more sophisticated structures
in reasonable time. Any mathematician with elementary programming skills can
imagine a new shape, a new curve, translate it into a program and see it appearing
within seconds on his high resolution screen, using a standard computer. Exploring
the field of mathematical objects becomes easy and affordable due to several factors:
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• The increasing power of processors, which makes calculations easier to perform.
• High resolution of computer screens, which gives precise and realistic images.
• High level programming languages which let the programmer focus on the heart

of the problem to solve.
• Specialized computer applications like ray-tracing software or 3D modelers,

when mastered, can also alleviate the mathematician’s work. Those softwares
are available in open-source and free versions.

• Laser-cutting machines, 3D printers are valuable tools to help making real-world
versions of mathematical shapes.

In the rest of the paper, I will present several categories of works achieved by
using part or all of those tools, and I try to show how, from the initial object I
wanted to visualize, I was able to tune the parameters in order to obtain a whole
family of related objects.

2 Anamorphoses

2.1 Definition

Anamorphoses are distorted images (resp. objects) needing to be seen through a
mirror, and from a specific point of view, in order to reconstruct the original image
(resp. objects). Anamorphoses appeared in Europe at the time of Renaissance, when
artists and scientists discovered the laws of perspective, and independently in China
during the XVIth century. A complete history of anamorphosis can be found in
Jurgis Baltrus̆aitis’ Anamorphoses ou Thaumaturgus opticus [3].

There are different methods for producing anamorphoses, either analytical, em-
pirical or hybrid.

Fig. 1 Anamorphosis in an egg-shaped mirror. Fig. 2 Distorted image on a cylinder
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Fig. 3 3D anamorphic sculpture. Fig. 4 Distorted quadrilaterals (preliminary try).

2.2 A Computer Method and its Evolution

In [5], I described a procedure for testing and constructing catoptric anamorphoses
in the general case. The setting-up of an anamorphosis needs three items : a mir-
ror, an observer, and the locus where the distorted image lays, which I will name
surface of distortion. This method can compute the distorted image corresponding
to an anamorphosis setting and print it, in order to obtain a real size version of the
anamorphosis. In [5], the surface of distortion was either a flat or a developable sur-
face. Extensions of the method can also help define anamorphoses where the surface
of distortion is no longer developable: we then lose the possibility of printing the
distorted design, but are still able to achieve it by directly drawing on the surface,
using the information returned by the program. In October 2010, James Hopkins, a
British sculptor [9], asked me whether it would be possible to compute the shape of
a three-dimensional wired form sculpture which would represent a chair when seen
through a spherical mirror. This led to an improvement of the original method[6],
where the surface of distortion is replaced with a set of volumes of distortion. The
new method computes the distorted image of a line (either a line segment or a cir-
cle ark), and gathers all those images in a single three-dimensionnal anamorphic
sculpture. Then exporting the results of those computation to a file, we can build a
real-world three-dimensionnal object, using 3D printing techniques. Figure 3 shows
an example of this process. Yet another improvement of the method is under devel-
opment, in collaboration with James Hopkins, allowing the definition of 3D distor-
tion of plain quadrilaterals (see figure 4). The related real-world sculpture is under
construction (november 2013).

In conclusion, when a method, and the tools used in it are well mastered, im-
provements and evolutions are easy to implement. One can imagine possible im-
provements, then test them first virtually and validate them with real-world achieve-
ments.
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3 Cardioidal variations

The cardioid is a very old and known curve, which can be defined in several man-
ners. Pedoe describes a method for constructing a cardioid as the envelop of a set of
circles:

• Draw a circle and choose a point on its circumference.
• Draw circles with centers lying on the initial circle, and passing through the

chosen point.
• The envelop of this set of circles is a cardioid[12] (see figure 5).

Fig. 5 Pedoe method for cardioid. Fig. 6 String method for cardioid.

Fig. 7 variation from Pedoe method. Fig. 8 Variation from string method.
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But the result is flat. What if we rotate each circle in the third dimension, with an
angle depending on its radius ? The function relying the rotation angle to the radius
can be arbitrary, and each choice defines a different final shape (see figure 7). The
shape is not difficult to code, once drawn. We can output the information (circle
centers, radii, angles) and use that to obtain a real three-dimensional version of the
virtual drawing. The experience of turning this 3D cardioid in your hands is still
stronger than seeing it on the screen. Each angle of vision makes it look different,
and the observer find new symmetries each time he moves it.

Playing with the function defining the rotation of each elementary circle, one
can obtain an infinity of different shapes, all very different from each other. The
best way to investigate this family of shape is either intensive tests, or animations.
Intuition alone may miss interesting structures.

Another way to draw a cardioid is the following algorithm, whom result is shown
on figure 6 :

• Draw a circle.
• All around the circumference of this circle, draw n equidistant points.
• Numbering those points 1 · · ·n, draw line between points i and (2× i)mod(n)

Once again, the result is flat: we can now try to replace each line segment with a
torus whose diameter equals the length of the segment, and that produces the object
of figure 8. Surprisingly, the external shape of this object is a simple sphere. Simple
mathematical reasoning might prove this, but the fact that it was discovered while
drawing it is a strong argument in favour of experimental mathematics. A lot of
explorations are still to be done: for example, what if the couple of points defining
a line segment is changed from (i,2× i) to (k1 × i,k2 × i) ? There is so much to
explore that even those easy programming tasks are not yet achieved.

4 Circle packings

Circle packing can be seen as the art of placing tangent circles on the plane, leaving
as little unoccupied space as possible. Circle packing has been (re)introduced by
William Thurston [15] in 1985. Kenneth Stephenson developed its study in [13]. In
this section, I will show how one can use different ways of producing circle pack-
ings, together with different geometric transformations that preserve the tangency
property of the arrangement, in order to produce elegant and appealing images. For
sake of aesthetical homogeneity, I will only consider packings of tangent circles
included in one external circle, also part of the tangency pattern. I mainly use two
operations : defining Steiner chains, and using ”Apollonian Gasketization” to fill
the gaps between the generated circles. At Bridges 2012, Inglis and Kaplan [10]
presented a method to produce fractal circular rings of tangent circles, where spaces
are filled with Apollonian circles. Their algorithm shares some similarity with ours,
but is in some ways more restrictive.
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Fig. 9 Circle packing experiments.

4.1 Steiner Chains

Steiner chains are chains of tangent circles, each of those circles also tangent to two
fixed and non intersecting circles. Steiner chains are obtained by first constructing
the easy solution: n circles forming a chain between two concentric circles, then
using a circle inversion to distort the arrangement (since circle inversion preserves
tangency). The way one chooses the inverting circle is a parameter of the design,
which can be used to create an infinity of different shapes. The number n is also a
parameter that leads to different solutions.
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4.2 Apollonian Gasket

Apollonian gaskets are obtained by recursively filling the gaps between three tan-
gent circles with a circle tangent to all those three circles. The standard Apollonian
Gasket starts with three equal circles inside a fourth one. In our procedure, we con-
sider filling the gaps between any set of three tangent circles.

4.3 Putting Things Together

The procedure used to generate circle packing patterns can be summarized in one
sentence: ”Each time you generate a new circle, fill it with a Steiner chain, then fill
the gaps by mean of gasketization”. Each steinerization might have its own param-
eters. Such a simple construction rule produces a very rich set of different patterns.
We can still add more diversity by applying at the end of the procedure a geometric
transform that preserves the tangency property, like Möbius transform1 or circle in-
version. A complete exploration of the graphical potentialities of Möbius transforms
can be found in Mumford’s Indra’s Pearls [11]. Figure 9 shows some variants. More
are available in [7], and still more of them are to be discovered.

5 Conclusion

Using those three examples, I wanted to show that wide fields of mathematical art
can be cleared by random exploration. The programmer can launch his program,
looking at the image appearing on his screen. He can first compute a low resolution
image, or abort the drawing if he is not satisfied with what he sees, refine the param-
eters of the object, and launch again. All this in seconds. One can even imagine a
cooperative and parallel exploration: by making available a smartphone application
where the user can launch a design, with his own parameters, collect the results, ask
people to rate them. This could reveal hidden design rules and interesting properties.
Several authors developped dedicated softwares to explore mathematical objects.
One can cite Ken Stephenson[2] in the field of circle packings, and Phillip Kent[1]
for conical, cylindrical and pyramidal anamorphoses.

1 Möbius transforms were in fact first described by Euler in Acta Acta academiae scientiarum
Petropolitanae, in 1777 (see [4])
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